20NOV18 Rev. A4

0.64Ⅲ Series Connector

1. Scope:

1.1 Contents

This specification covers the requirements for product performance, test methods and quality assurance provisions of 0.64 III Series Connector(H-type, V-Type CONN.).

Applicable product description and part numbers are as shown in Appendix 1.

2. Applicable Documents:

The following documents form a part of this specification to the extent specified herein. In the event of conflict between the requirements of this specification and the product drawing, the product drawing shall take precedence. In the event of conflict between the requirements of this specification and the referenced documents, this specification shall take precedence.

2.1 TE Specifications:

A. 114-5329 : Application Specification

Crimping 0.64 III Series Receptacle Contact

B. 114-5291 : Application Specification

Crimping of 0.64 Tab Contact

C. 501-5596 : Test Report

2.2 Commercial Standards and Specifications

A. JASO D605 : Multi-pole Connector for automobilesB. JASO D7101 : Test Methods for Plastic Molded Parts

C. JIS C3406 : Low-Voltage Wires and Cables for Automobiles

D. JIS D0203 : Method of Moisture, Rain and Spray Test for Automobile PartsE. JIS D0204 : Method of High and Low Temperature Test for Automobile Parts

F. JIS D1601 : Vibration Testing Method for Automobile Parts

G. JIS R5210 : Portland Cement

3. Requirements:

3.1 Design and Construction:

Product shall be of the design, construction and physical dimensions specified on the applicable product drawing.

3.2 Material:

A. Contact:

Description Material		Finish			
Receptacle (Female) Copper Alloy		Selective Gold plating over Ni under plating,			
		or Pre-Tinned.			

Fig.1

B. Housing: PBT, SPS, PPS

3.3 Ratings:

A. Voltage Rating: 12VDC

B. Temperature Rating: -30°C to 105°C

3.4 Performance Requirements and Test Descriptions:

The product shall be designed to meet the electrical, mechanical and environmental performance requirements specified in Fig.2 and Fig.3. All tests shall be performed in the room temperature, unless otherwise specified.

Rev. A4 2 of 11

3.5 Test Requirements and Procedures Summary:

Para.	Test Items	·	equiremen	ts	Procedures		
3.5.1	Confirmation of Product	Meet requirements of product drawing and TE Specification 114-5291, 114-5329.			Visually, dimensionally and functionally inspected per applicable quality inspection plan.		
	•	Elec	trical Requ	uirements			
3.5.2	Termination Resistance (Low Level)	0.64Ⅲ	16m Ω		Max.(Initial)		Subject mated contacts assembled in housing to 20mV Max. open circuit at 10mA. Fig.4
3.5.3	Termination Resistance (Specified Current)	0.64Ⅲ	8mV/A Max.(Initial) 16mV/A Max.(Final		Measure mill volt drop of contact in mated connectors, open circuit at 1A. Fig.4		
3.5.4	Dielectric Withstanding Voltage	No creeping discharge nor flashover shall occur.			Impressed voltage 1kVAC for 1 min Mated connector. Fig.5		
3.5.5	Insulation Resistance	100MΩ Min.			Impressed voltage 500VDC Mated connector Fig.5		
3.5.6	Current Leakage	3mA Max	(.		Impressed voltage 14VDC Fig.6		
3.5.7	Temperature Rise	Wire Size (mm²)	Current Max. (A) Rise(°C) 2.2 60		Measure temperature rising at wire crimped by applied current to all positions.		
3.5.8	Over current Loading	No ignition is allowed during the test.		ed	Apply the current to only one position. Applied Current:Fig.7		
Physical Requir							
3.5.9	Vibration (High Frequency)	No electrical discontinuity greater than 1 μ sec. Shall occur. Satisfy requirements of test item on the "3.6 sequence".		ec. Shall	Vibration Frequency: 20→200→20Hz/3min. Acceleration:44.1m/s² Vibration Direction: X,Y,Z Duration:3hours each Mounting:Fig.8		

Fig.2(To be continued)

Rev. A4 3 of 11

Para.	Test Items	Red	quirements	Procedures			
3.5.10	Shock	Resistance	e should not be	Acceleration: 980m/s ²			
		over 7Ω greater than		Waveform: Half sine wave			
		1 <i>μ</i> sec.		Duration: 6msec.			
				Number of drops: 6 drops each			
				directions of X,Y,and Z axes, total 18			
				drops			
				Fig.8			
3.5.11	Connector	70N Max.		Operation Speed: 25~100mm/min			
	Mating Force			Measure the force required to mate			
				connectors.			
3.5.12	Connector	70N Max.		Operation Speed: 25~100mm/min			
	Unmating force			Measure the force required to unmate			
				connectors.			
				(without housing lock)			
3.5.13	Connector	100N Min.		Operation Speed : 100mm/min			
	Locking Strength			Apply an axial pull-off load to one of			
				the mated housing, measure locking			
				strength.			
3.5.14	Contact	10N Max.	per contact	Measure the force required to insert			
	Insertion Force			contact into housing.			
3.5.15	Contact	Contact	Tensile Strength	Operation Speed : 100 mm/min.			
	Retention Force		(N) Min.	Apply an axial pull-off load to			
	(Lance only)	0.64Ⅲ	30	crimped wire.			
3.5.16	Contact	100N Min.		Measure contact retention force			
	Retention Force			with secondary lock set it effect.			
	(Secondary Lock)		1	Operation Speed: 100mm/min.			
3.5.17	Crimp Tensile	Wire Size	Tensile Strength	Apply an axial pull-off load to			
	Strength	(mm²)	(N) Min.	crimped wire of contact secured			
		0.3	55*	on the tester.			
				Operation speed: 100mm/min			
		0.5	90				
		*Included to	he insulation grip				

Fig.2(To be continued)

Rev. A4 4 of 11

Para.	Test Items	Requirements	Procedures			
3.5.18	Resistance to "Kojiri"	Satisfy requirements of test item on the "3.6 sequence"	This test may be alternatively performed manually. See Fig.9			
3.5.19	Handling Ergonomics	No abnormalities allowed in manual mating/unmating Handling.	Manually operated			
		Environmental Requirement	nts			
3.5.20	Thermal Shock	Satisfy requirements of test item on the "3.6 sequence"	Mated connector40°C/30min., 100°C/30min. Making this a cycle. Repeat 1000 cycles.			
3.5.21	Humidity, Steady State	Current Leakage 1mA Max.	Mated connector. 90~95% R.H. 60±5°C 96 hours 14V applied. Fig. 6			
3.5.22	Industrial Gas(SO ₂)	Satisfy requirements of test item on the "3.6 sequence"	Unmated connector SO₂ Gas: 25ppm, 75% R.H. 25°C, 96 hours			
3.5.23	Temperature Life (Heat Aging)	Satisfy requirements of test item on the "3.6 sequence"	Mated connector, 120°C, 120 hours			
3.5.24	Resistance to Cold	Satisfy requirements of test item on the "3.6 sequence"	Mated connector, -40±3°C, 120 hours			
3.5.25	Humidity- Temperature Cycling	Satisfy requirements of test item on the "3.6 sequence"	Mated connector Condition: Fig.9 10cycles			
3.5.26	Dust Bombardment	Satisfy requirements of test item on the "3.6 sequence"	Mated connector Subject JIS R5210 cement blow of 1.5kg per 10 seconds in 15 minutes intervals for 8 cycles, with Unmate/Re-mating per 2 cycles			

Fig.2(To be continued)

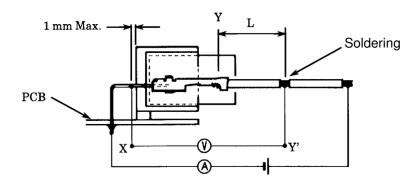
Rev. A4 5 of 11

Para.	Test Items	Requirements	Procedures	
3.5.27	Compound	Resistance should not be	Temperature: 80°C	
	Environment	over 7Ω greater than	Vibration frequency:	
	Resistance	1μ sec.	20→200→20Hz/3min.(log)	
		Satisfy requirements of test	Accelerated Velocity: 44.1 m/s ²	
		item on the "3.6 sequence"	Vibration Direction: X,Y,Z	
			Duration: 300 hours	
			Test Current: Fig.10	
			Mounting: Fig.8	
3.5.28	Condensation	Satisfy requirements of test	0°C/10min,80°C/90~95%RH/30min.	
		item of the "3.6 sequence".	Making this a cycle. Repeat 48cycles.	
			Monitor current leakage during the	
			test.	

Fig.2(End)

Rev. A4 6 of 11

3.6 Product Qualification Test Sequence


Product Qualification Test S	Seque	nce												
		Test Group												
Test Examination	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Test Sequence*													
Examination of Product	1	1,5	1,6	1,3	1,5	1,5	1,5	1,6	1,5	1,6	1,4	1,5	1,5	1,5
Termination Resistance (Low Level)	4	2,6	2,7		2,6	2,6	2,6	2,7	2,6	2,7		2,6	2,6	
Termination Resistance (Rated Current)	5	3,7	3,8		3,7	3,7	3,7	3,8	3,7	3,8		3,7	3,7	
Dielectric with standing Voltage	7					9	9							
Insulation Resistance	6					8	8							2,4
Current Leakage							4							6
Temperature Rising	8		4,9										4	
Over Current Loading												4		
Vibration										5			8	
(High Frequency)											_			
Physical Shock	_										3			
Connector Mating Force	3													
Connector Unmating Force	9													
Connector Locking Strength	10		11	5	9	11	11							
Contact Insertion Force	2													
Contact Retention Force	11													
Contact Retention Force (Double Lock)	12		12	6	10	12	12							
Crimp Tensile Strength	13		13		11				8					
Resistance to "Kojiri"		4												
Handling Ergonomics	14		10	4	8	10	10							
Thermal Shock					4									
Humidity(Steady State)							4							
Industrial SO ₂ Gas									4					
Temperature Life (Heat Aging)			5					4		4	2			
Resistance to Cold				2										
Humidity-Temperature Cycling						4								
Dust Bombardment								5						
Compound Environment Resistance													4	
Condensation														5

^{*} Numbers indicate sequence in which tests are performed.

Fig. 3

Rev. A4 7 of 11

Deduct resistance of Y-Y'(wire "L") from X-Y' Fig.4

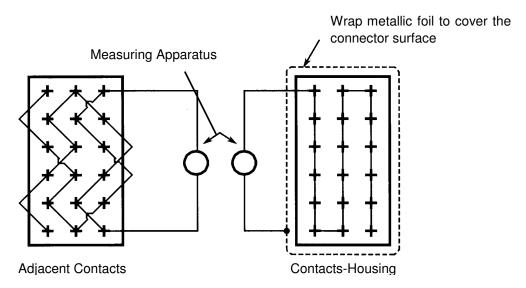
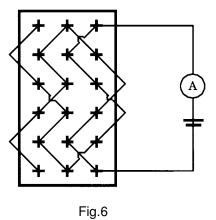



Fig.5

Rev. A4 8 of 11

Wire size(mm ²)	Sequence	Test Current(A)	Duration
	1	16.5	60 minutes
0.5	2	20.2	200 sec.
0.5	3	22.5	5 sec.
	4	30.0	1 sec.

Fig. 7 Over current loading

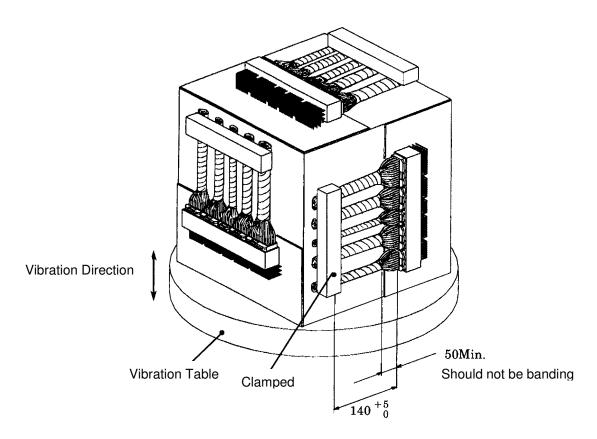


Fig. 8

Rev. A4 9 of 11

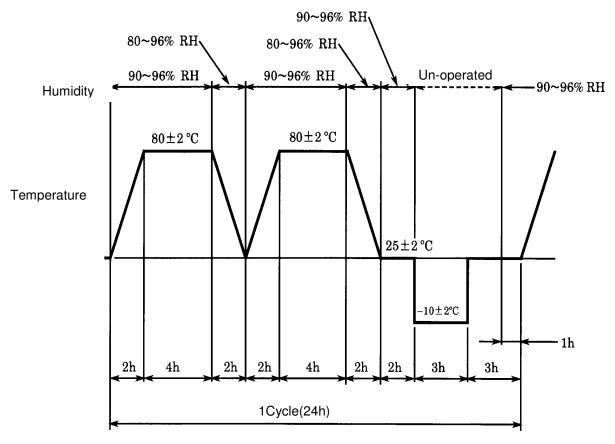


Fig. 9 Humidity-Temperature Cycling

Terminal Type			Testing Method			
Tab Size	Finish	Wire Size	Test Current	Procedures		
0.64Ⅲ	Tin-Plating	0.5 mm ²	1.2 A	45 min : ON 15 min : OFF		
0.04Ш	Selective Gold	0.5 mm ²	10 mA	300 Cycles		

Fig.10 Compound Environment Test Current

Rev. A4 10 of 11

The applicable product descriptions and part numbers are as shown in Appendix. 1

	descriptions and part numbers are as shown in Appendix.
Product Part No.*	Description
1376350	0.64 Connector 8Pos.Cap Housing Assembly (H-TYPE)
1981469	0.64 Connector 8Pos.Cap Housing Assembly Keying (H-TYPE)
2317945	0.64 Connector 10Pos.Cap Housing Assembly (1ROW H-TYPE)
1318772	0.64 Connector 12Pos.Cap Housing Assembly (H-TYPE)
1473898	0.64 Connector 12Pos.Cap Housing Assembly (V-TYPE)
1318382	0.64 Connector 16Pos.Cap Housing Assembly (H-TYPE)
1565476	0.64 Connector 16Pos.Cap Housing Assembly (V-TYPE)
1318853	0.64 Connector 24Pos.Cap Housing Assembly (H-TYPE)
1376111	0.64 Connector 24Pos.Cap Housing Assembly (V-TYPE)
1565373	0.64 Connector 28Pos.Cap Housing Assembly (V-TYPE)
1565375	0.64 Connector 28Pos.Cap Housing Assembly (V-TYPE)
1318745	0.64 Connector 32Pos.Cap Housing Assembly (H-TYPE)
1318384	0.64 Connector 40Pos.Cap Housing Assembly (H-TYPE)
1376113	0.64 Connector 40Pos.Cap Housing Assembly (V-TYPE)
1746315	0.64 Connector 72 (8+24+40) Pos. Cap Housing Assembly (H-TYPE)
2297730	0.64 Connector 12Pos. Cap Housing Assembly SMT (H-TYPE)
1717103	0.64ⅢConnector 8Pos. Plug Housing Assembly
1981471	0.64ⅢConnector 8Pos. Plug Housing Assembly Keying
1746875	0.64ⅢConnector 8Pos. Plug Housing Assembly(1ROW-TYPE)
2298343	0.64ⅢConnector 8Pos. Plug Housing Assembly Short-Type
2317984	0.64ⅢConnector 10Pos. Plug Housing Assembly(1ROW-TYPE)
1717106	0.64ⅢConnector 12Pos. Plug Housing Assembly
1746872	0.64ⅢConnector 12Pos. Plug Housing Assembly(SHORT BODY-TYPE)
1747375	0.64ⅢConnector 12Pos. Plug Housing Assembly(KEYING-TYPE)
1717109	0.64ⅢConnector 16Pos. Plug Housing Assembly
1717112	0.64ⅢConnector 24Pos. Plug Housing Assembly
1717115	0.64ⅢConnector 28Pos. Plug Housing Assembly
1717118	0.64ⅢConnector 32Pos. Plug Housing Assembly
1674312	0.64ⅢConnector 40Pos. Plug Housing Assembly
1674311-1	0.64Ⅲ Receptacle Contact (Sn)
1674311-2	0.64Ⅲ Receptacle Contact(Au)
1674936-1	0.64 III Receptacle Contact(S) (Sn)
1674936-2	0.64Ⅲ Receptacle Contact(S) (Au)
1827483-1	0.64Ⅲ Receptacle Contact(SS) (Sn)
1827483-2	0.64Ⅲ Receptacle Contact(SS) (Au)

Appendix 1

- (a) Applicable cap housing assembly for test must be regular dimensions
- ★Note: Part number is consisted from listed base number and 1 digit numeric prefix and Suffix with dash. Refer to catalog or customer drawing for specific part numbers for each base number. When prefix is zero, zero and dash are omitted.

Rev. A4 11 of 11